开源智能体框架 OWL(未完成)
安装配置
以 windows11 为例。
- 安装 OWL 框架包
shell
git clone https://github.com/camel-ai/owl.git
cd owl
conda create -n owl_env python=3.12 -y
conda activate owl_env
pip install -r requirements.txt
一键安装包下载地址:owl.rar
- (可选)安装 Playwright,用来控制浏览器行为。 首先安装 nodeJS,之后安装 Playwright
shell
# 全局安装 playwright
npm install -g playwright
# 下载浏览器(如 Chromium、Firefox 和 WebKit)才能运行(自动下载所需的浏览器并安装到默认路径 C:\Users\Administrator\AppData\Local\ms-playwright)
npx playwright install
- 修改 run_ollama.py(如果需要运行本地模型)
shell
from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.toolkits import (
CodeExecutionToolkit,
ExcelToolkit,
ImageAnalysisToolkit,
SearchToolkit,
WebToolkit,
FileWriteToolkit,
)
from camel.types import ModelPlatformType
from utils import OwlRolePlaying, run_society
from camel.logger import set_log_level
set_log_level(level="DEBUG")
load_dotenv()
def construct_society(question: str) -> OwlRolePlaying:
r"""Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
OwlRolePlaying: A configured society of agents ready to address the question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwq", # todo 修改为自己的模型
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.8, "max_tokens": 1000000},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwq", # todo 修改为自己的模型
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.2, "max_tokens": 1000000},
),
"web": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwq", # todo 修改为自己的模型
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwq", # todo 修改为自己的模型
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
"image": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwq", # todo 修改为自己的模型
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
}
# Configure toolkits
tools = [
*WebToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["web"],
planning_agent_model=models["planning"],
).get_tools(),
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
SearchToolkit().search_duckduckgo,
# SearchToolkit().search_google, # Comment this out if you don't have google search
SearchToolkit().search_wiki,
*ExcelToolkit().get_tools(),
*FileWriteToolkit(output_dir="./").get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = OwlRolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Example research question todo 修改为自己的提示语
question = "Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer."
# Construct and run the society
society = construct_society(question)
answer, chat_history, token_count = run_society(society)
# Output the result
print(f"\033[94mAnswer: {answer}\033[0m")
if __name__ == "__main__":
main()
开始使用
shell
python run_ollama.py
文章的最后,如果您觉得本文对您有用,请打赏一杯咖啡!感谢!
